This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Ultrasonic Solution Degradations of Polystyrene and Substituted Polystyrenes in Tetrahydrofuran as Solvent

S. L. Malhotra^a; M. Breton^a; J. M. Gauthier^a ^a Xerox Research Centre of Canada Mississauga, Ontario, Canada

To cite this Article Malhotra, S. L. , Breton, M. and Gauthier, J. M.(1982) 'Ultrasonic Solution Degradations of Polystyrene and Substituted Polystyrenes in Tetrahydrofuran as Solvent', Journal of Macromolecular Science, Part A, 18: 7, 1151 -1184

To link to this Article: DOI: 10.1080/00222338208066486 URL: http://dx.doi.org/10.1080/00222338208066486

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Ultrasonic Solution Degradations of Polystyrene and Substituted Polystyrenes in Tetrahydrofuran as Solvent

S. L. MALHOTRA, M. BRETON, and J. M. GAUTHIER

Xerox Research Centre of Canada Mississauga, Ontario, L5L 1J9 Canada

ABSTRACT

Ultrasonic (70 W, 20 kHz) solution (2% THF) degradations of polystyrene (PS), $poly(\alpha$ -methylstyrene) (P α MeS), poly(p-isopropyl α -methylstyrene) (PpiPr α MeS), poly(p-chlorostyrene) (PpClS), poly(p-bromostyrene) (PpBrS), and poly(p-methoxystyrene) (PpOMeS) have been carried out in tetrahydrofuran at 27° C. The average number of chain scissions S (where S = $[(\overline{M}_{n})_{0}/(\overline{M}_{n})_{t}]$ - 1), computed from the overall values of $(\overline{M}_{n})_{0}$ and \overline{M}_{n}_{t} , were found to be different from those of S' (where S' $= \alpha([\overline{M}_{n})_{0}/(\overline{M}_{n})_{t}] - 1))$ based on the component (only that part of the polymer which is involved in degradation) data of the weight fraction (α), $(\overline{M}_n)_0$, and $(\overline{M}_n)_t$. S' for polystyrene and substituted polystyrene follows the order PS > PpClS > PpiPraMeS > $PpBrS > PpOMeS > P\alpha MeS$. In the case of PS where degradations were also carried out at -20°C, lowering of the temperature increased the weight fraction of polymer degraded as well as S. Based on the viscosity and GPC data, it is concluded that the ultrasonic solution degradation of PS does not lead to branched polymers.

Copyright © 1983 by Marcel Dekker, Inc.

INTRODUCTION

Ultrasonic solution degradations of polystyrene [1] and poly(α methylstyrene) [2] are well documented. When polymer solutions are subjected to ultrasonic treatments, shearing of polymer molecules yields homolytic cleavage [3-7] due to cavitation [8-14]. These degradations have been mostly carried out in dilute solutions as cavitation is difficult to achieve in viscous media. Other parameters which may also affect ultrasonic solution degradation of polymers are pressure [15, 16], temperature [10-17], frequency [18] and intensity [10, 19-27] of ultrasound, reactor design [28-30], and molecular weights of the starting materials 17-25. In the present studies. ultrasonic solution degradations of polystyrene (PS), $poly(\alpha-methylsty$ rene) (P α MeS), poly(p-isopropyl α -methylstyrene) (PpiPr α MeS), poly(pbromostyrene) (PpBrS), poly(p-chlorostyrene) (PpClS), and poly(pmethoxystyrene) (PpOMeS) have been carried out at constant conditions of pressure (atmospheric), frequency (20 kHz), intensity (70 W), and concentration (2% in THF) as a function of time. The principal results of these studies are reported here.

EXPERIMENTAL

Materials

Polystyrene (Pressure Chemical Co.); poly(p-chlorostyrene), poly(p-bromostyrene), and poly(p-methoxystyrene), (Aldrich Chemical Co.); and $poly(\alpha-methylstyrene)$ [31] and $poly(p-isopropyl \alpha-methyl$ styrene) [32] were used in the present study.

Degradation Procedure

Ultrasonic degradations of polymer solutions in THF were carried out in a batch reactor (10 cm long, 2.5 cm diameter, 50 mL capacity), equipped with a water jacket to maintain a 2° C temperature within, measured with a Ni-Cr alloy probe and a Comark digital thermometer [17, 33]. The sealed steel reactor was screwed onto a threaded nodal point on a 1.25 cm diameter disruptor horn (Heat systems, Model 375 A with a nominal frequency of 20 kHz). The ultrasonic intensity of 70 W was adjusted using the calibration curve of the meter reading, the power control setting, and the power output in watts. After sonicating the polymer solutions for a desired period of time, these were transferred to 120 mL capped bottles for viscosity and gel permeation chromatographic analyses.

Characterization of Polymers

Viscosity

Calculation of the intrinsic viscosity of the original as well as of the sonicated polymers was carried out in THF at 25°C as well as in toluene at 30°C, making use of the flow time measurement data obtained with Ubbelohde viscometers for at least four concentrations. Knowing the flow time of the solvent and the solutions, the computation of the intrinsic viscosity $[\eta]$ is carried out with

$$\begin{bmatrix} \eta \end{bmatrix} = \lim_{\mathbf{c} \to 0} \eta_{\mathbf{s}\mathbf{p}} / \mathbf{c}$$
(1)

where

$$\eta_{\rm sp}/c = \left(\frac{\text{flow time of solution}}{\text{flow time of solvent}} - 1\right)$$

Huggins coefficient k_{H} is related to [η] by

$$(\eta_{\rm sp}/c) = [\eta] + k_{\rm H}[\eta]^2 c$$
⁽²⁾

By making use of Mark-Houwink constants K and a [34] for PpClS, PpBrS, and PpOMeS in toluene, molecular weights \overline{M}_{1} were

computed for these polymers. Combining these molecular weights with those obtained from GPC data, K and a for PpClS (1.34×10^{-3} dL/g, 0.54) PpBrS (3.18×10^{-5} dL/g, 0.77) and PpOMeS (2.2×10^{-5} dL/g, 0.79) were obtained at 25°C.

Gel Permeation Chromatographic Analyses

Molecular weight distributions of polymers were carried out with a Waters Associates GPC [equipped with a high pressure solvent delivery system, (Model 6000 A), ultraviolet absorbance detector (Model 440) and a differential refractometer (Model R401)] operated at 25°C. The separating system consisted of four μ -Styragel columns connected in series, each packed with cross-linked polystyrene gel (by the Waters method) having pore sizes of 500, 1×10^3 , 1×10^4 , and 1×10^5 Å, respectively. The flow of solvent was maintained at 1 mL/ min while the concentration of polymer solution was limited to 0.2% in order to render negligible the "concentration effects" on the peak position in the chromatograms. Calibration of the instrument was performed with PS standards as well as with other substituted polystyrenes of predetermined molecular weights. Calibration curve relating elution volume V_e and molecular weight \overline{M} for PS (Eq. 3) PpCIS (Eq. 4), PpBrS (Eq. 5), PpOMeS (Eq. 6), PaMeS (Eq. 7), and PpiPraMeS (Eq. 3) are as follows:

$$\ln \overline{M} = 24.03 - 0.440 V_{e}$$
(3)
$$\ln \overline{M} = 25.35 - 0.496 V_{e}$$
(4)
$$\ln \overline{M} = 22.20 - 0.365 V_{e}$$
(5)
$$\ln \overline{M} = 24.93 - 0.456 V_{e}$$
(6)
$$\ln \overline{M} = 24.93 - 0.428 V_{e}$$
(7)

With the help of Eqs. (3) to (7), \overline{M}_{W} and \overline{M}_{n} of the degraded homopolymers were computed from their uncorrected GPC chromatograms using the summation method [35].

RESULTS AND DISCUSSION

The solution properties of PS ($\overline{M}_{uv} = 9.0 \times 10^5$, $\overline{M}_{uv}/\overline{M}_{n} = 1.3$) before and after its ultrasonic degradation at 27 and -20° C for various periods of time are presented in Table 1. Molecular weights \overline{M}_{w} (Fig. 1) and \overline{M}_n computed from GPC chromatograms decrease with increasing irradiation time while the $\overline{M}_w/\overline{M}_n$ ratio remains constant within ± 0.2 of 1.35 and do not approach a value of 2.0 which is typical of random-scission mechanism. This would suggest that even after 480 min of irradiation at 27° C and 240 min of irradiation at -20° C, the limiting chain-length below which no degradation takes place has been achieved. Huggins coefficients, k_{H} , of the degraded polymers stay within ± 0.06 of 0.44. This value is characteristic of random coil. The average number of scissions S (S = $[(\overline{M}_n)_0/(\overline{M}_n)_t] - 1)$ [36-40] for the ultrasonic solution degradation of PS (\overline{M}_w = 9.0 \times 10⁵) decreases with increasing irradiation time. These calculations of S min¹ are based on the conventional method of using overall values of $(\overline{M}_n)_0$ and $(\overline{M}_n)_t$. However, as in ultrasonic solution degradations, only a part of the polymer is involved initially, so the use of overall molecular weights is questionable. In order to overcome this objection, an alternate approach of analyses was developed [41, 42] where

TABLE 1. Ultrasonic (70 W, 20 kHz) Solution (2% THF) Degradation of PS ($\overline{M}_{W} = 9.0 \times 10^{5}$) for Various

Periods	or time							
	Irradiation time	Temperature	$\overline{\mathrm{M}}_{\mathrm{W}} imes 10^{-4}$	$rac{M}{n} imes 10^{-}$	4	$\begin{bmatrix} n \end{bmatrix}^{\mathbf{a}}$	Huggins coefficient	S min ⁻¹
No.	(min)	(°C)	(GPC)	(GPC)	Mw/Mn	(dL/g)	k _H	× 10 ⁻
1	Nonirradi- ated	ı	90.0	70.0	1,3	2.25	ŧ	ı
X-104	7.5	27	66.0	52.0	1.25	ı	I	46.0
X-105	15	27	61.0	48.0	1.25	t	ı	30.0
X-106	30	27	62.5	47.0	1.33	1.92	0.38	16.0
X-107	60	27	53.0	37.5	1.40	1.74	0.41	14.4
X-108	120	27	48.0	33,5	1.43	1.51	0.45	9,1
X-109	180	27	42.0	29.0	1.43	1.34	0.43	7.8
X-110	270	27	27.5	19.0	1.44	0.93	0.40	6.9
X-111	360	27	30.0	20.0	1.50	0.81	0.50	6.9
X-112	480	27	26.0	18.0	1.45	ı	ł	6.0
X-274	30	-20	49.5	30.5	1.6	ł	r	43.2
X-275	60	-20	51.0	35.0	1.45	I	I	16.7
								(continued)

ULTRASONIC SOLUTION DEGRADATION

2011
January
24
20:35
At:
Downloaded

р
Q
3
Ľ.
Ľ,
Hong The second
8
ت
_
-
н ы
LE 1
BLE 1
ABLE 1
LABLE 1

No.	Irradiation time (min)	Temperature (°C)	$\overline{M}_{W} imes 10^{-4}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{n}}^{\mathrm{M}} imes \mathrm{10^{-4}}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{w}}/\overline{\mathrm{M}}_{\mathrm{n}}$	$\left[\eta ight]^{ a}_{ (dL/g)}$	Huggins coefficient k _H	${ m S~min^{-1}} imes { m 10}^3$
X-276	- 120	-20	23.5	15.0	1.55	1	t	30.5
X-277	180	-20	20.0	13.5	1.47	ł	ł	23.2
X-278	240	-20	16.0	11.0	1.47	ı	I	16.0
a _{In T} molecul	'HF at 25°C, ar weight poly	\overline{M}_{W} and \overline{M}_{H} value ymers in GPC.	es listed in th	is table are n	ot absolute	due to poc	or separation	of high

FIG. 1. Variation of molecular weights as a function of irradiation time for PS ($\overline{M}_W = 9.0 \times 10^5$): (\odot) 27°C and (•) -20°C. (See Table 1 for other data.)

the normalized GPC chromatograms (area under each chromatogram being unity of degraded polymers) were compared with that of the original polymer as shown in Fig. 2. One notes that in the first 120 min of ultrasonic degradation (Fig. 2a), an area marked with vertical hash lines (-) has disappeared from the original distribution and has reappeared elsewhere, possibly that marked with horizontal hash lines (+). On converting these areas into distributions (Fig. 2b), one can readily visualize the changes resulting from the decomposition of higher molecular weight species. Making use of $(\overline{M}_n)_0$ and $(\overline{M}_n)_t$ of these components in conjunction with their weight fraction (α),

normalized values of S' are computed as follows: S' = $\alpha([(\overline{M}_n)_0/(\overline{M}_n)_t] - 1)$.

Figure 3 shows component degradation of PS ($\overline{M}_{W} = 9.0 \times 10^{5}$) at 27 and -20°C for periods of 60, 120, and 180 min. Under identical conditions of ultrasonic solution treatment of PS, more polymer is involved in degradation at -20°C than at 27°C. S' min⁻¹ values calculated using (\overline{M}_{n})₀, (\overline{M}_{n})_t, and α of these components are presented in Table 2. Values for the average number of scissions S min⁻¹ (6.0-14.4) × 10⁻³ at 27°C and (16.0-43.2) × 10⁻³ from the overall

FIG. 2. Graphical method of analysis by which GPC distribution curves are broken down into their components: case of PS ($\overline{M}_W = 9.0 \times 10^5$) subjected to ultrasonic treatment at 27°C for a period of 120 min.

FIG. 3. Component degradation of PS ($\overline{M}_W = 9.0 \times 10^5$) at 27 and -20°C for periods of 60, 120, and 180 min. (See Table 2 for other data.)

2011
January
24
20:35
At:
Downloaded

$_{J} = 9.0 \times 10^{5}$)
egradation of PS ($\overline{\mathrm{M}}_{\mathrm{w}}$
colution (2% THF) D
(70 W, 20 kHz) S
LE 2. Ultrasonic
TAB

, e T	i pou			Before	e degrada	tion	After	degradat	ion			
(B. E. E. F	raut- lon ne tin)	Temper- ature (°C)	Weight fraction (<i>a</i>)	${\overline{\mathrm{M}}}_{\mathrm{W}} imes 10^{-4}$	$\overline{\mathbb{M}}_{\mathrm{n}} imes 10^{-4}$		${ m M \over W} imes { m 10}^{-4}$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-4}$	M M N	S' normalized values	${f S^{f}} imes 10^{3} imes 10^{3}$	${\rm S}_{\rm min^{-1}} \times 10^3$
9	0	27	0.25	92.8	86.8	1.07	37.5	30.8	1.22	0.45	7.6	14.4
12	0	27	0.38	90.0	84.0	1.07	35.0	27.5	1.27	0.78	6.5	9.1
18	0	27	0.46	92.1	86.2	1.07	33,3	25.7	1.29	1.08	6.0	7.8
27	0	27	0.75	85.6	78.2	1.10	27.4	21.8	1.25	1,95	7.0	9.9
481	0	27	0.76	85.6	78.2	1.10	27.4	21.8	1.25	1.95	4.0	6.0
ñ	0	-20	0.32	88.4	83.9	1.05	34.8	26.9	1.29	0.67	22.0	43.2
12	0	-20	0.84	82.5	74.4	1.10	24.8	16.7	1.48	2.90	24.0	30.5
18	0	-20	0.95	79.0	70.0	1.13	22.7	15.6	1.45	3.33	18.0	23.2
24(0	-20	1.0	75.0	64.4	1.16	21.0	13.8	1.52	3,89	16.0	16.0

2011
January
24
20:35
At:
Downloaded

TABLE 3. for Variou	Ultrasonic (70 W, 1 s Periods of Time	20 kHz) Solution ()	2% THF) Degrad	ation of PaMeS	$(\overline{\mathrm{M}}_{\mathrm{W}}$ = 2.0 < 10 ⁵) at 2	27°C
No.	Irradiation time (min)	$\overline{\mathrm{M}}_{\mathrm{W}}^{} imes10^{-3}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-3}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{w}}/\overline{\mathrm{M}}_{\mathrm{n}}$	$\begin{bmatrix} \eta \end{bmatrix}$ in THF at 25°C (dL/g)	k _H
	Nonirradiated	200	58	3.37		
X-136	60	170	57	3.0	0.47	0.38
X-135	120	140	56	2.55	ł	ı
X-134	180	115	50	2.3	0.38	0,20

ULTRASONIC SOLUTION DEGRADATION

1161

0.320.41

0.33 0.31

2.2 2.1

47

105 100 100

270 360 480

X-133 X-132

X-131

1

1

2.1

FIG. 4. Normalized GPC chromatograms before and after ultrasonic solution degradation of PaMeS at 27° C for various periods of time. (See Table 3 for other data.)

FIG. 5. Component degradation of $P\alpha MeS$ ($\overline{M}_W = 2.0 \times 10^5$) at 27°C for various periods of time. (See Table 4 for other data.)

molecular weights are higher than those $(4.0-7.6) \times 10^{-3}$ at 27° C and $(16.0-22.0) \times 10^{-3}$ at -20° C computed on the basis of component analyses. This suggests that data on S min⁻¹ cited in the literature should be treated with caution.

In Table 3 are presented data on molecular weights, viscosity, and $k_{\rm H}$ for the ultrasonic solution degradation of PaMeS ($\overline{M}_{\rm W} = 2.0 \times 10^5$) at 27°C. $\overline{M}_{\rm W}$ decreases with increasing irradiation time; however, $\overline{M}_{\rm n}$ values do not show significant decreases on irradiation. This does not permit to evaluate S min⁻¹. However, S' min⁻¹, computed from normalized GPC distribution (Fig. 4) comparisons leading to component tracing (Fig. 5) and their analyses (Table 4) for PaMeS (1.7-3.98) $\times 10^{-3}$ are significantly lower than those for PS. It is worthwhile mentioning that lower values of S' min⁻¹ in the case of PaMeS as compared to those for PS may arise due to lower initial $\overline{M}_{\rm W}$ of the former polymer. S' min⁻¹ values ranging from (14.0-32.0)

1164

TABLE 4. Ultrasonic (70 W, 20 kHz) Solution (2% THF) Degradation of PoMeS at $27^{\circ}C$ 10tic ÷ 7 f f V datio -4 È

			Before	e degrada	tion	After	degradati	lon		
No.	Irradiation time (min)	Weight fraction (α)	${\overline{M}} {w \over w} imes 10^{-4}$	$\overline{M}_{n} imes 10^{-4}$		$rac{M}{w} imes$ 10 $^{-4}$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-4}$	M M	S' normalized values	$\mathbf{S}^{1} \mathbf{min}^{-1}$
X-107	60	0.06	52,9	46.4	1.16	16.7	14.4	1,33	0.14	2.33
X-108	120	0.21	39.4	33,8	1.16	13.7	11.0	1.25	0.44	3.70
X-109	180	0.36	35.0	30.2	1.16	13,9	10.1	1.38	0.72	3.98
X-110	270	0.36	35.0	30.1	1.16	9.5	7.8	1.22	1.03	3.81
X-111	360	0.40	33,3	28.4	1.17	10.1	7.5	1.34	1.11	3,09
X-112	480	0.43	32.7	28.1	1.16	12.9	9.7	1.33	0.82	1.70

MALHOTRA, BRETON, AND GAUTHIER

2011
January
24
20:35
At:
Downloaded

D		
20		
t 2		ĺ
а (
ંગ		l
.		
$\hat{\mathbf{o}}$		
s,		l
"	_	İ
	5	I
0		ĺ
Je.		
al		I
$\mathbf{P}_{\mathbf{I}}$		ļ
joj		
Ę		
a a		ļ
tio		Ì
dal		l
ra		ļ
)eg		
) L		
ΗF		
E		
200		
5		ł
ĩõ		ł
lut		I
\mathbf{So}		l
() Z		
kН		ļ
20		ĺ
~	Ф	
12	Ŭ.	ļ
20	Ĥ	ĺ
<u>ں</u>	of	
on	ds	
as	rio	
ltr	Pel	
D	S.	
<u>ى</u>	lou	
ਸ਼੍ਰ	ari	
BI	2	Ì
ΤA	or	
	ч 	I

No.	Irradiation time (min)	$\overline{\mathrm{M}}_{\mathrm{W}} imes 10^{-3}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-3}$ (GPC)	$\overline{M}_{W}/\overline{M}_{\Pi}$	$\left[\begin{array}{c} \eta \end{bmatrix} ext{ in THF at} \\ 25^{\circ} ext{C} (ext{dL}/ ext{g}) \end{array} ight.$	$k_{ m H}$
1	Nonirradiated	200	33.0	6.0		ł
X-142	60	180	33.0	5.5	0.34	0.53
X-141	120	130	29.0	4.4	0.32	0.30
X-140	180	150	33,0	4.5	0.30	0.31
X-139	250	110	34.0	3,3	ı	ı
X-138	330	120	36.5	3,3	0.27	0.14
X-137	480	105	37.5	2.85	r	I

ULTRASONIC SOLUTION DEGRADATION

FIG. 6. Normalized GPC chromatograms before and after ultrasonic solution degradation of PpiPraMeS ($\overline{M}_W = 2.0 \times 10^5$) at 27°C for various periods of time. (See Table 5 for other data.)

× 10⁻³ at 27°C and (53.0-116.0) × 10⁻³ at -20°C for PS ($\overline{M}_{W} = 1.8 \times 10^{6}$) [42] are higher than those for PS ($\overline{M}_{W} = 9.0 \times 10^{5}$) which varied from (6.0-14.4) × 10⁻³ at 27°C and (16.0-43.2) × 10⁻³ at -20°C.

In Table 5 are presented data on molecular weights, viscosity, and $k_{\rm H}$ for the ultrasonic solution degradation of PpiPraMeS ($\overline{\rm M}_{\rm W} = 2.0 \times 10^5$) at 27°C. $\overline{\rm M}_{\rm W}$ decreases while $\overline{\rm M}_{\rm n}$ remains essentially constant on increasing the irradiation time. S' min⁻¹ calculated from the normalized GPC distribution (Fig. 6) comparisons leading to component tracing (Fig. 7) and their analyses (Table 6) for PpiPraMeS (3.8-30.2 \times 10^{-3}) are far greater than those for PaMeS. This is also reflected in the decrease of overall $\overline{\rm M}_{\rm W}$ (Fig. 8) for the two polymers, viz., PaMeS and PpiPraMeS, with identical initial $\overline{\rm M}_{\rm W}$ where the latter degrades faster than the former. One may be tempted

FIG. 7. Component degradation of PpiPr α MeS at 27°C for various periods of time. (See Table 6 for other data.)

Ultrasonic (70 W, 20 kHz) Solution (2% THF) Degradation of PpiPr α MeS (\overline{M}_{W} = 2.0 × 10⁵) at 27°C TABLE 6.

	$\begin{array}{c} S^{t} \ min^{-1} \\ \times 10^{3} \end{array}$	30.2	18.4	10.3	5.1	3.8
	S' normalized values	1.81	2.20	1.86	1.68	1.84
tion	M M n n	1.37	1.50	1.51	1.44	1.50
r degrada	$\frac{\overline{M}}{n} \times 10^{-4}$	8.30	6.20	7.88	8.65	7.87
Afte	$\overline{\mathrm{M}}_{\mathrm{W}} imes 10^{-4}$	11.3	9.4	11.9	12.4	11.7
ation	M M n	1.25	1.70	1.63	1.73	1.82
e degrad;	$\frac{\dot{M}}{n} \times 10^{-4}$	116.0	58.8	62,1	50.3	42.3
Before	$\overline{\mathrm{M}}_{\mathrm{W}} \times 10^{-4}$	145.0	100.0	101.0	86.7	77.0
	Weight fraction (α)	0.14	0.26	0.27	0,35	0.42
	Irradiation time (min)	60	120	180	330	480
	No.	X-142	X-141	X-140	X-138	X-137

MALHOTRA, BRETON, AND GAUTHIER

FIG. 8. Variation of molecular weights, \overline{M}_{w} , as a function of irradiation time for P α MeS and PpiPr α MeS at 27°C. (See Tables 3 and 5 for other data.)

to conclude that the para substituent isopropyl in PpiPraMeS has something to do with it; however, it should be noted that there are more higher molecular weight species $(\overline{M}_W/\overline{M}_n = 6.0)$ in PpiPraMeS than in PaMeS $(\overline{M}_W/\overline{M}_n = 3.37)$. In Fig. 8 are shown variations of overall \overline{M}_W as a function of irradiation time for PaMeS and PpiPraMeS. One notes that the latter polymer degrades better than the former. In Table 7 are presented data on molecular weights, viscosity, k_H, and S min⁻¹ for the ultrasonic solution degradation of PpClS ($\overline{M}_W = 1.8 \times 10^6$) at 27°C. \overline{M}_W and \overline{M}_n , both decrease with irradiation time.

S min⁻¹ values of 25.0 to 268.0 × 10⁻³ from the overall $(\overline{M}_n)_0$ and $(\overline{M}_n)_t$ of PpClS are higher than those for PS which ranged between 14.0 and 44.0 × 10⁻³. S' min⁻¹ calculated from the normalized GPC

2011
January
24
20:35
At:
Downloaded

or
°C fi
t 27
0 ⁶) a
× 1(
= 1.8
M
ils (ī
PpC
n of
datic
egra
, Д
THI
(2%)
ution
Solı
kHz)
201
0 W,
ic (7 Fime
ason of 7
Ultra 'iods
7. 1 Per
BLE ious
TA] Var

No.	Irradiation time (min)	$\overline{\overline{M}}_{ m W} imes {f 10}^{-3}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-3}$ (GPC)	M	$\begin{bmatrix} \eta \end{bmatrix}^{a}$ in toluene at 20°C (dL/g)	$\left[\eta \right]^{a}$ in THF at 25°C (dL/g)	${\rm S~min^{-1}} \\ \times 10^3$
1	Nonirradi- ated	1800	1250	1,4	0.98	2.42	i i
X- 88	7.5	955	415	2.3	1	ŀ	268.0
X-89	15	895	385	2.3	ı	ı	150.0
X-90	30	190	340	2,3	ı	ı	89.0
X-91	60	500	230	2.1	0.68	ŧ	74.0
X-92	120	395	175	2.2	0.61	ı	51.0
X-93	180	280	185	1.5	1	0.72	32.0
X-94	360	220	115	1.9	ł	0.69	27.0
X-95	480	165	105	1.5	J	0.58	22.7

FIG. 9. Normalized GPC chromatograms before and after ultrasonic solution degradation of PpClS at 27° C for various periods of time. (See Table 7 for other data.)

FIG. 10. Component degradation of PpClS ($\overline{M}_W = 1.8 \times 10^6$) at 27°C for various periods of time. (See Table 8 for other data.)

TABLE	8. Ultrasonio	c (70 W, 2() kHz) So	lution (2%	6 THF)	Degradat	ion of Pp	CIS at 2	7°C for Vario	us Periods	s of Time
			Before	e degrada	tion	After	degradat	ion			
No.	Irradiation time (min)	Weight fraction (α)	${\overline{ m M}} { m W} imes { m 10}^{-4}$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-4}$	M	$rac{M}{W} imes 10^{-4}$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-4}$		S' normalized values	S' min ⁻¹ $\times 10^3$	${ m S~min^{-1}} imes 10^3$
X-91	60	0.38	163	143	1.14	45.7	27.0	1.7	1.65	27.6	74.0
X-92	120	0.56	135	114	1.19	44.6	24.1	1.85	2.15	17,9	51.0
X-93A	240	0.68	127	94.5	1.34	30.6	19.6	1.55	2.58	10.8	ı
X-95	480	0.93	104	65.2	1.60	18.0	11.9	1.5	4.19	8.7	22.7

FIG. 11. Variation of \overline{M}_{W} and \overline{M}_{n} as a function of irradiation time for PS ($\overline{M}_{W} = 1.8 \times 10^{6}$) [42] and PpClS at 27°C. (See Table 7 for other data.) (\circ) PS, \overline{M}_{W} ; (•) PS, \overline{M}_{n} ; (\triangle) PpClS, \overline{M}_{W} ; and (\blacktriangle) PpClS, \overline{M}_{n} .

distribution comparisons (Fig. 9) leading to component tracing (Fig. 10) and their analyses (Table 8) for PpCIS are lower than those of PS $(\overline{M}_W = 1.8 \times 10^6)$ [42]. Higher S min⁻¹ values are also evidenced by the variation of overall \overline{M}_W and \overline{M}_n of PS and PpCIS as a function of irradiation (Fig. 11) where the latter polymer degrades faster than the former.

In Table 9 data are presented on molecular weights, viscosity, $k_{H'}$ and S min⁻¹ for the solution degradation of PpBrS ($\overline{M}_{W} = 5.6 \times 10^{5}$) at 27°C. \overline{M}_{W} and \overline{M}_{n} both decrease with irradiation time. The $\overline{M}_{W}/\overline{M}_{n}$ ratio remains constant within ±0.1 of 1.4. S min⁻¹ values vary from 2.4 to 6.4×10^{-3} and are lower than those for PS ($\overline{M}_{W} = 9.0 \times 10^{5}$).

S' min⁻¹ calculated from the normalized GPC distribution comparisons (Fig. 12) leading to component tracing (Fig. 13) and their analyses (Table 10) for PpBrS ranged between 4.3 and 7.2 $\times 10^3$ and are of the

2011
January
24
20:35
At:
Downloaded

for	
C°7	
t 27	
) ⁵) 2	
1 (×	
5,6	
11	>
N N	
BrS	
Pp]	
1 of	
atio	
rada	
Deg	
(H	
H	
(2%	
tion	
Solu	
Iz)	
0 kF	
7, 2	
70 V	e
ic ('	Tim
son	ď
Iltra	lods
р С	Peri
6 E	us.
ABI	aric
Fi	\geq

No.	Irradiation time (min)	$rac{\mathrm{M}}{\mathrm{W}} imes 10^{-3}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-3}$ (GPC)	$\overline{\mathrm{M}}_{\mathrm{W}}/\overline{\mathrm{M}}_{\mathrm{n}}$	$[\eta]^{a}$ in toluene at $20^{\circ}C$ (dL/g)	$\left[\begin{array}{c} \eta \end{array} \right]^{a}$ in THF at 25°C (dL/g)	${ m S min^{-1}} \times 10^3$
T	Nonirradi- ated	560	385	1.45	0.58	1.62	
X-193	60	510	335	1.5	1	0.81	2.5
X-194	120	315	220	1.45	0.32	0.64	6.2
X-195	180	305	210	1.45	0.25	0.54	4.6
X-196	240	270	180	1.5	1	I	4.7
X-197	360	250	195	1.3		0.47	2.7
X-198	480	220	160	1.4	0.20	0.40	2.9
aHug	gins coefficient	t k _H from visco	osity data for a	ll samples of	f PpBrS fall betwee	n 0.40 to 0.68.	

ULTRASONIC SOLUTION DEGRADATION

FIG. 12. Normalized GPC chromatograms before and after ultrasonic solution degradation of PpBrS at 27° C for various periods of time. (See Table 9 for other data.)

FIG. 13. Component degradation of PpBrS ($\overline{M}_W = 5.6 \times 10^5$) at 27°C for various periods of time. (See Table 10 for other data.)

			Before) degrada	tion	After	degradat	ion			
No.	Irradiation time (min)	Weight fraction (<i>a</i>)	${\overline{\mathrm{M}}}_{\mathrm{W}} imes 10^{-4}$	${\overline{\mathrm{M}}_{\mathrm{n}}}_{ ext{10}^{-4}}$		$\overline{\mathrm{M}}_{\mathrm{W}} imes 10^{-4}$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-4}$	M M N	S' normalized values	S' min ⁻¹ $\times 10^3$	${ m S~min^{-1}} imes { m N}$
X-193	60	0.065	116.5	109.0	1.07	25.0	20.0	1.25	0.26	4.33	2.5
X-194	120	0.36	80.8	70.2	1.15	26.6	20.5	1.30	0.86	7.20	6.2
X-195	180	0.50	74.8	64.3	1.15	24.4	19.1	1.28	1.18	6.55	4.6
X-196	240	0.63	69,2	59.0	1.15	22.8	18.5	1.25	1.39	5.77	4.7
X-197	360	0,69	67.6	57.8	1.17	21.0	17.7	1.20	1.55	4.30	2.7
X-198	480	0.72	67.0	57.1	1.17	20.0	15.8	1.27	1.87	3.50	2.9

TABLE 10. Ultrasonic Solution (2% THF) Degradation of PpBrS at 27°C

$27^{\circ}C$ for	Various Periods	of Time		0	M	
	Irradiation	$\overline{\mathrm{M}}_{\mathrm{w}} imes 10^{-3}$	$\overline{\mathrm{M}}_{\mathrm{n}} imes 10^{-3}$		$\begin{bmatrix} \eta \end{bmatrix}^{a}$ in toluene	$\begin{bmatrix} \eta \end{bmatrix}^{a}$ in THF
No.	(min)	(GPC)	(GPC)	$\overline{\mathrm{M}}_{\mathrm{W}}/\overline{\mathrm{M}}_{\mathrm{n}}$	(dL/g)	(dL/g)
I	Nonirradiated	700	40	17.5	0.82	0.86
X-80	7.5	620	34	18.2	1	
X-81	15	570	3 8	14.9	ı	
X-82	30	520	42	12.4		J
X-83	60	430	33	13.0	I	ł
X-84	120	370	35	10.5	ł	J
X-85A	240	300	30	10.0	0.46	0.38
X-86	360	235	40	5,9	I	0.37
X-87	480	195	35	5.7	ŀ	0.33
a Hugg	ins coefficient k _H	for all samples	s of PpOMeS fa	ll between 0.3	3 and 0.58.	

= 7,0 \times 10⁵) at TABLE 11. Ultrasonic (70 W, 20 kHz) Solution (2% THF) Degradation of PpOMeS ($\overline{\mathrm{M}}$

Downloaded At: 20:35 24 January 2011

1178

MALHOTRA, BRETON, AND GAUTHIER

FIG. 14. Normalized GPC chromatograms before and after ultrasonic degradation of PpOMeS ($\overline{M}_{W} = 7.0 \times 10^{5}$) at 27°C for various periods of time. (See Table 11 for other data.)

same magnitude as those for PS ($\overline{M}_W = 9.0 \times 10^5$). S' min⁻¹ values for PpBrS are higher than those of S min⁻¹.

In Table 11 are presented data on molecular weights, viscosity, and $k_{\rm H}$ for the ultrasonic solution degradation of PpOMeS ($\overline{\rm M}_{\rm W}$ = 7.0 \times 10⁵) at 27°C. $\overline{\rm M}_{\rm W}$ decreases regularly while $\overline{\rm M}$ stays practically constant with increasing irradiation time. S' min⁻¹ calculated from the normalized GPC distribution comparisons (Fig. 14) leading to component tracing (Fig. 15) and their analyses (Table 12) varied between 3.14 and 9.4 \times 10³ and are lower than those for PpBrS. These are also lower than those for PS ($\overline{\rm M}_{\rm W}$ = 9.0 \times 10⁵). Variation of $\overline{\rm M}_{\rm W}$ as a function of irradiation time (Fig. 16) for PpBrS and PpOMeS follows similar trends.

In Fig. 17 are shown the S' values as a function of irradiation time for the six polymers studied. These follow the order PS > PpClS > PpiPraMeS > PpBrS > PpOMeS > PaMeS.

FIG. 15. Component degradation of PpOMeS at $27 \degree C$ for various periods of time. (See Table 12 for other data.)

FIG. 16. Variation of \overline{M}_{W} as a function of irradiation time for PpOMeS and PpBrS at 27°C. (See Table 7 for other data.)

 ${
m S'} {
m min}^{-1} imes 10^3$ $imes 10^3$ 9.40 4.803.90 3.143.25 normalized values 1.17 0.56 0.57 0.95 1.51 š Mw 1.341.221.33 Ultrasonic Solution Degradation of PpOMeS at 27°C 1.37 1.31 | ⊠^r After degradation 4 × 10 17.8 25.924.0 21.0 18.6 Þ \times 10⁻ 34.6 29.3 27.9 24.3 M 24.4 1.15 1.26 1.28 1.15 1.20 M |¤^ª Before degradation 143.0 132.0 99.7 81.0 75.8 \times 10⁻ Mu \times 10⁻⁴ 151.0 102.0 97.0 165.0 120.0 M fraction (α) TABLE 12. Weight 0.08 0.140.30 0.49 0.41 Irradiation time (min) 360 240 60120 480 X-85A X-84 X-86 X-83 X-87 No.

ULTRASONIC SOLUTION DEGRADATION

FIG. 17. Average number of chain scissions, S' min⁻¹, computed from the component degradation data for PS, $P\alpha MeS$, $PpiPr\alpha MeS$, PpClS, PpBrS, and PpOMeS as a function of irradiation time.

CONCLUSIONS

1. In the ultrasonic solution degradation of PS at 27° C, branching is not involved and a further lowering of irradiation temperature results in higher S min⁻¹. S' min⁻¹ calculated from component degradation of PS is lower than that of S min⁻¹. This suggests that data on S min⁻¹ cited in the literature should be treated with caution.

2. In polystyrene and substituted polystyrene solution degradations at 27° C, the average number of chain scissions per minute (S' min⁻¹) follows the order PS > PpClS > PpBrS > PpOMeS.

3. In the solution degradation of PaMeS and PpiPraMeS of similar \overline{M}_{w} , the latter polymer has higher S' min⁻¹ values. These do not result from the p-substituent isopropyl group in PpiPraMeS but may be ascribed to the presence of a greater proportion of higher molecular weight species in PpiPraMeS ($\overline{M}_{w}/\overline{M}_{n} = 6.0$) as compared to those in PaMeS ($\overline{M}_{w}/\overline{M}_{n} = 3.37$).

ULTRASONIC SOLUTION DEGRADATION

Studies are in progress on the ultrasonic solution degradations of poly(alkyl methacrylates) at different temperatures to better understand the role of substituents and temperature in shear degradations.

ACKNOWLEDGMENT

The authors are grateful to K. F. O'Driscoll for his constant encouragement and keen interest in this project.

REFERENCES

- A. Casale and R. S. Porter, Polymer Stress Reactions, Vols. 1 and 2, Academic, New York, 1978.
- [2] S. Kawase, H. Doi, and T. Kakurai, <u>Kobunshi Ronbunshu</u>, <u>35</u>, 109 (1978).
- [3] A. Henglein, Z. Naturforsch., 10b, 616 (1955).
- [4] W. F. Head and W. M. Lauter, J. Am. Pharm. Assoc., 46, 617 (1957).
- [5] M. A. K. Mostafa, J. Polym. Sci., 33, 295 (1958).
- [6] Z. Osawa, T. Kimura, Y. Ogiwara, and M. Matsubayashi, J. Polym. Sci., A-1, 9, 2039 (1971).
- [7] K. F. O'Driscoll and A. U. Sridharan, <u>J. Polym. Sci., Polym.</u> Chem. Ed., 11, 1111 (1973).
- [8] Lord Rayleigh, The Theory of Sound, 1st. Am. Ed., Vols. 1 and 2, Dover, New York, 1945.
- [9] M. Kosino and I. Miyagawa, J. Chem. Soc., Jpn. Ind. Chem. Sect., 54, 193 (1951).
- [10] P. Alexander and M. Fox, J. Polym. Sci., 12, 533 (1954).
- [11] H. W. W. Brett and H. H. G. Jellinek, Ibid., 13, 441 (1954).
- [12] B. B. Thomas and W. J. Alexander, Ibid., 25, 285 (1957).
- [13] H. U. Borgstedt, Br. J. Appl. Phys., 15, 773 (1964).
- [14] D. Ensminger, Ultrasonics: The Low and High Intensity Applications, Dekker, New York, 1973.
- [15] H. H. W. Brett and H. H. G. Jellinek, J. Polym. Sci., 21, 535 (1956).
- [16] S. Ono, Rev. Phys. Chem. Jpn., 14, 25 (1940).
- 17 S. L. Malhotra, J. Macromol. Sci.-Chem., A17, 601 (1982).
- 18 M. A. K. Mostafa, J. Polym. Sci., 33, 311 (1958).
- [19] R. O. Prud'homme and P. Graber, J. Chim. Phys., 46, 323 (1949).
- [20] R. O. Prud'homme and P. Graber, Ibid., 46, 667 (1949).
- 21] R. O. Prud'homme, Ibid., <u>47</u>, 795 (1950).
- [22] A. Weissler, J. Appl. Phys., 21, 171 (1950).
- [23] A. Weissler, H. W. Cooper, and S. Snyder, J. Am. Chem. Soc., 72, 1769 (1950).

1184	MALHOTRA, BRETON, AND GAUTHIER
[2 4]	H. W. Melville and A. J. R. Murray, <u>Trans. Faraday Soc.</u> , <u>46</u> , 996 (1950).
[25]	M. A. K. Mostafa, J. Polym. Sci., 33, 295 (1958).
2 6	T. Hirose, Technol. Rep. Osaka Univ., 10, 395 (1960).
27	M. A. K. Mostafa, J. Polym. Sci., 28, 519 (1958).
2 8	B. S. El'tsefon and A. A. Berlin, Vysokomol. Soedin., 4, 1033
_	(1962).
[2 9]	B. S. El'tsefon and A. A. Berlin, Vysokomol. Soedin., 6, 199
	(1964).
[30]	B. S. El'tsefon and A. A. Berlin, Polym. Sci. USSR, 5, 668
	(1964).
[31]	J. Leonard and S. L. Malhotra, J. Polym. Sci., A-1, 9, 1983
	(1971).
[32]	J. Leonard and S. L. Malhotra, J. Macromol. SciChem., A11,
	2087 (1977).
[33]	S. L. Malhotra and J. M. Gauthier, Ibid., A18, 783 (1982).
[34]	J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd ed.,
	Wiley, New York, 1974.
[35]	Waters Associates, Gel Permeation Chromatograph Instruction

- Manual, Bull. No. 2, 1966, p. 2064.
- 36 A. R. Shultz and S. M. Leahy, J. Appl. Polym. Sci., 5, 64 (1961).
- G. H. Hartley and J. E. Guillet, Macromolecules, 1, 165 (1968). 37
- 38 J. H. Adams, J. Polym. Sci., A-1, 8, 1077 (1970).
- 39
- J. H. Adams, <u>Ibid.</u>, 8, 1279 (1970). C. H. Bamford and C. F. H. Tipper, <u>Degradation of Polymer</u>, 40 Elsevier, New York, 1975, p. 473.
- S. L. Malhotra, J. Hesse, and L. P. Blanchard, Polymer, 16, [41] 81 (1975).
- [42] S. L. Malhotra, J. Macromol. Sci.-Chem., A18, 1055 (1982).

Accepted by editor January 11, 1982 Received for publication January 25, 1982